3.514 \(\int \frac{\cot ^3(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=75 \[ \frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{2 a^{3/2} f}-\frac{\csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 a f} \]

[Out]

((2*a + b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]])/(2*a^(3/2)*f) - (Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x
]^2])/(2*a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0898619, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3194, 78, 63, 208} \[ \frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{2 a^{3/2} f}-\frac{\csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 a f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^3/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

((2*a + b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]])/(2*a^(3/2)*f) - (Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x
]^2])/(2*a*f)

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^3(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1-x}{x^2 \sqrt{a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=-\frac{\csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 a f}-\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{4 a f}\\ &=-\frac{\csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 a f}-\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sin ^2(e+f x)}\right )}{2 a b f}\\ &=\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{2 a^{3/2} f}-\frac{\csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 a f}\\ \end{align*}

Mathematica [A]  time = 0.169127, size = 71, normalized size = 0.95 \[ \frac{\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2}}-\frac{\csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a}}{2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^3/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(((2*a + b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]])/a^(3/2) - (Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2])
/a)/(2*f)

________________________________________________________________________________________

Maple [A]  time = 1.213, size = 114, normalized size = 1.5 \begin{align*}{\frac{1}{f}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( 2\,a+2\,\sqrt{a}\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \right ) } \right ){\frac{1}{\sqrt{a}}}}-{\frac{1}{2\,af \left ( \sin \left ( fx+e \right ) \right ) ^{2}}\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}+{\frac{b}{2\,f}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( 2\,a+2\,\sqrt{a}\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \right ) } \right ){a}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

1/a^(1/2)*ln((2*a+2*a^(1/2)*(a+b*sin(f*x+e)^2)^(1/2))/sin(f*x+e))/f-1/2/f/a/sin(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1
/2)+1/2/f*b/a^(3/2)*ln((2*a+2*a^(1/2)*(a+b*sin(f*x+e)^2)^(1/2))/sin(f*x+e))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.73345, size = 537, normalized size = 7.16 \begin{align*} \left [\frac{{\left ({\left (2 \, a + b\right )} \cos \left (f x + e\right )^{2} - 2 \, a - b\right )} \sqrt{a} \log \left (\frac{2 \,{\left (b \cos \left (f x + e\right )^{2} - 2 \, \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{a} - 2 \, a - b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) + 2 \, \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} a}{4 \,{\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f\right )}}, -\frac{{\left ({\left (2 \, a + b\right )} \cos \left (f x + e\right )^{2} - 2 \, a - b\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{-a}}{a}\right ) - \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} a}{2 \,{\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(a)*log(2*(b*cos(f*x + e)^2 - 2*sqrt(-b*cos(f*x + e)^2 + a + b)
*sqrt(a) - 2*a - b)/(cos(f*x + e)^2 - 1)) + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*a)/(a^2*f*cos(f*x + e)^2 - a^2*f
), -1/2*(((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(-a)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a)/a) - sq
rt(-b*cos(f*x + e)^2 + a + b)*a)/(a^2*f*cos(f*x + e)^2 - a^2*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{3}{\left (e + f x \right )}}{\sqrt{a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**3/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(cot(e + f*x)**3/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )^{3}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)^3/sqrt(b*sin(f*x + e)^2 + a), x)